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Abstract

In structure-from-motion with a single camera it is well
known that the scene can be only recovered up to a scale. In
order to compute the absolute scale, one needs to know the
baseline of the camera motion or the dimension of at least
one element in the scene. In this paper, we show that there
exists a class of structure-from-motion problems where it is
possible to compute the absolute scale completely automati-
cally without using this knowledge, that is, when the camera
is mounted on wheeled vehicles (e.g. cars, bikes, or mobile
robots). The construction of these vehicles puts interest-
ing constraints on the camera motion, which are known as
“nonholonomic constraints”. The interesting case is when
the camera has an offset to the vehicle’s center of motion.
We show that by just knowing this offset, the absolute scale
can be computed with a good accuracy when the vehicle
turns. We give a mathematical derivation and provide ex-
perimental results on both simulated and real data over a
large image dataset collected during a 3 Km path. To our
knowledge this is the first time nonholonomic constraints
of wheeled vehicles are used to estimate the absolute scale.
We believe that the proposed method can be useful in those
research areas involving visual odometry and mapping with
vehicle mounted cameras.

1. Introduction

Visual odometry (also called structure from motion) is
the problem of recovering the motion of a camera from the
visual input alone. This can be done by using single cam-
eras (perspective or omnidirectional) [2, 14], stereo cam-
eras [8], or multi-camera systems [1]. The advantage of
using more than one camera is that both the motion and the
3D structure can be computed directly in the absolute scale
when the distance between the cameras is known. Further-
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Figure 1. If the camera is located on the vehicle’s non steering
axle, the rotation and translation of both the camera and the car are
exactly the same (a). If the camera is mounted with an offset to the
axle, rotation and translation of camera and car are different (b).
While case (a) can be used to simplify motion estimation (see our
previous work [12]), case (b) can be used to compute the absolute
scale from a single camera.

more, the cameras not necessarily need to have an overlap-
ping field of view, as shown in [1]. Conversely, when us-
ing a single camera the absolute scale must be computed
in other ways, like by measuring the motion baseline or the
size of an element in the scene [2], or by using other sensors
like IMU and GPS [10].

In the case of a single camera mounted on a vehicle, the
camera follows the movement of the vehicle. Most wheeled
vehicles (e.g. car, bike, mobile robot) possess an instanta-
neous center or rotation, that is, there exists a point around
which each wheel of the vehicle follows a circular course
[15]. For instance, for car-like vehicles the existence of this
point is insured by the Ackerman steering principle (Fig. 2).
This property assures that the vehicle undergoes rolling mo-
tion, i.e. without slippage. Accordingly, the motion of the
vehicle can be locally described by circular motion. As we
will show in the paper, this property puts interesting con-
straints on the camera motion. Depending on the position
of the camera on such a vehicle, the camera can undergo
exactly the same motion or deviate from it. The interesting
case is when the camera has an offset to the vehicle center
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of motion (see Fig. 1). By just knowing this offset and the
camera relative motion from the point correspondences, the
absolute scale can be computed when the vehicle turns.

The recent efforts of various companies and research
centers on street level mapping make the proposed approach
very interesting. In these cases the cars are usually equipped
with a single omni-directional camera (see as an example
Google cars) and with our novel method it would be possi-
ble to compute the absolute scale of the recovered map.

This paper is organized as follows. Section 2 reviews
the related work. Section 3 explains the motion model of
wheeled vehicles. Section 4 provides the equations for com-
puting the absolute scale. Section 5 describes two algo-
rithms for estimating the motion under planar assumption.
Finally, sections 6 and 7 present the experimental results
and conclusions.

2. Related work

The standard way to get the absolute scale in motion es-
timation is the use of a stereo setup with known baseline. A
very well working approach in this fashion has been demon-
strated by Nister et al. [8]. The fields of views of the two
cameras were overlapping and motion estimation was done
by triangulating feature points, tracking them, and estimat-
ing new poses from them. Other approaches using stereo
setups are described in [5, 6] and can be traced back to as
early as [7]. A recent approach from Clipp et al. [1] re-
laxed the need of overlapping stereo cameras. They pro-
posed a method for motion estimation including absolute
scale from two non-overlapping cameras. From indepen-
dently tracked features in both cameras and with known
baseline, full 6DOF 1 motion could be estimated. In their
approach the motion up to scale was computed from feature
tracks in one camera. The remaining absolute scale could
then be computed from one additional feature track in the
other camera.

For the case of single cameras, some prior knowledge
about the scene has been used to recover the absolute scale.
Davison et al. [2] used a pattern of known size for both
initializing the feature locations and computing the absolute
scale in 6DOF visual odometry. Scaramuzza et al. [14] used
the distance of the camera to the plane of motion and feature
tracks from the ground plane to compute the absolute scale
in a visual odometry system for ground vehicle applications.

In this paper, we propose a completely novel approach to
compute the absolute scale from a single camera mounted
on a vehicle. Our method exploits the constraint imposed by
nonholonomic wheeled vehicles, that is, their motion can be
locally described by circular motion. The geometry of cir-
cular motion has been deeply studied in [3, 4] where the
application was 3D shape recovery using a turntable. How-

1DOF = Degrees Of Freedom

ever, the theory explained in this document and the applica-
tion to the absolute scale computation are completely novel.

Finally, observe that this paper is the follow-up of our
previous paper [12], where we used the circular motion con-
straint to design the two most efficient algorithms for re-
moving the outliers of the feature matching process: 1-point
RANSAC and Histogram Voting. However the present doc-
ument has been conceived to be stand alone. Indeed, feature
correspondences are assumed to be provided already.

3. Motion model of nonholonomic vehicles

A vehicle is said to be nonholonomic if its controllable
degrees of freedom are less than its total degrees of free-
dom [15]. An automobile is an example of a nonholonomic
vehicle. The vehicle has three degrees of freedom, namely
its position and orientation in the plane. Yet it has only two
controllable degrees of freedom, which are the acceleration
and the angle of the steering. A car’s heading (the direction
in which it is traveling) must remain aligned with the orien-
tation of the car, or 180◦ from it if the car is going backward.
It has no other allowable direction. The nonholonomicity of
a car makes parking and turning in the road difficult. Other
examples of nonholonomic wheeled vehicles are bikes and
most mobile robots.

The nonholonomicity reveals an interesting property of
the vehicle’s motion, that is, the existence of an Instanta-
neous Center of Rotation (ICR). Indeed, for the vehicle to
exhibit rolling motion without slipping, a point must exist
around which each wheel of the vehicle follows a circular
course. The ICR can be computed by intersecting all the
roll axes of the wheels (see Fig. 2). For cars, the existence
of the ICR is ensured by the Ackermann steering principle
[15]. This principle ensures a smooth movement of the ve-
hicle by applying different steering angles to the left and
right front wheel while turning. This is needed as all the
four wheels move in a circle on four different radii around
the ICR (Fig. 2). As the reader can perceive, every point of
the vehicle and any camera installed on it undergoes locally
planar circular motion. Straight motion can be represented
along a circle of infinite radius of curvature.

Let us now derive the mathematical constraint on the ve-
hicle motion. Planar motion is described by three param-
eters, namely the rotation angle θ, the direction of trans-
lation ϕv , and the length ρ of the translation vector (Fig.
3(a)). However, for the particular case of circular motion
and when the vehicle’s origin is chosen along the non-
steering axle as in Fig. 3(a), we have the interesting prop-
erty that ϕv = θ/2. This property can be trivially veri-
fied by trigonometry. Accordingly, if the camera reference
frame coincides with the car reference frame, we have that
the camera must verify the same constraint ϕc = θ/2. How-
ever, this constraint is no longer valid if the camera has an
offset L with the vehicle’s origin as shown in Fig. 3(b). In
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Figure 2. General Ackermann steering principle
.

(a) L = 0 (b) L �= 0
Figure 3. Camera and vehicle motion under circular motion con-
straint. When camera and vehicle reference systems coincide
ϕc = ϕv = θ/2 (a). When the camera has an offset L with
the vehicle’s origin, we still have ϕv = θ/2 but ϕc �= θ/2 (b).
Note, the camera does not necessarily have to be on the axis of
symmetry of the vehicle.

this case, as we will show in the next section, a more com-
plex constraint exists, which relates ϕc to θ through the off-
set L and the vehicle’s displacement ρ. Since L is constant
and can be measured very accurately, we will show that it
is then possible to estimate ρ (in the absolute scale) by just
knowing ϕc and θ from point correspondences.

4. Absolute scale computation

4.1. Camera undergoing planar circular motion

Figure 3(b) shows the camera and vehicle coordinate
systems. Both coordinate systems are aligned so that there
is no additional rotation between them. Observe that the
camera does not necessarily have to be on the axis of sym-
metry of the vehicle. The camera is denoted by P1 and it is
located at C1 = [0, 0, L] in the vehicle coordinate system.
The camera matrix P1 is therefore

P1 =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 −L

⎤
⎦ (1)

The camera P1 and the vehicle now undergo the following
circular motion denoted by the rotation R and the transla-
tion T (see also Fig. 3(b)).

R =

⎡
⎣ cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎤
⎦ (2)

T = ρ

⎡
⎣ sin

(
θ
2

)
0

cos
(

θ
2

)
⎤
⎦ (3)

The transformed camera P2 is then

P2 = [R2 t2] = P1

[
R −RT
0 1

]
(4)

To compute the motion between the two cameras P2 and P1,
the camera P2 can be expressed in the coordinate system of
P1. Let us denote it by P ′2.

P ′2 = [R′2 t′2] = P2

[
P1

0 0 0 1

]−1

(5)

The rotation part R′2 equals R2 (which equals R) and the
translation part t′2 is

t′2 =

⎡
⎣ ρ sin

(
θ
2

)
− L sin(θ)
0

L cos(θ)− ρ cos
(

θ
2

)
− L

⎤
⎦ (6)

Then, the essential matrix E for our setup describing the
relative motion from camera P1 to P ′2 is defined as E =
[t′2]×R′2 and can be written as:

E =

⎡
⎣ 0 L + ρ cos

(
θ
2

)
− L cos(θ) 0

L− ρ cos
(

θ
2

)
− L cos(θ) 0 ρ sin

(
θ
2

)
+ L sin(θ)

0 ρ sin
(

θ
2

)
− L sin(θ) 0

⎤
⎦

(7)
Finally, observe that the translation part t′2 and the essen-

tial matrix E can also be expressed in terms of the absolute
distance λ, between the two camera centers, and the camera
relative motion (θ, ϕc). Thus, we obtain:

t′2 = λ

⎡
⎣ sin (θ − ϕc)

0
− cos (θ − ϕc)

⎤
⎦ (8)

E = λ

⎡
⎣ 0 cos(θ − ϕc) 0
− cos(ϕc) 0 sin(ϕc)

0 sin(θ − ϕc) 0

⎤
⎦ (9)

where the latter is the standard expression of the essential
matrix for general planar motion. These two expressions
for t′2 and E will be used in the next sections for computing
the absolute scale.
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4.2. Computing ρ and λ from rotation and transla-
tion angles

To recap, the parameter ρ is the absolute distance be-
tween the two vehicle positions (Fig. 3(a)), while λ is the
absolute distance between the two camera centers which is
λ = ||t′2|| (Fig. 3(b)).

It is convenient to be able to express ρ and λ in terms
of the rotation angle θ and the directional angle ϕc of the
camera translation vector because these parameters can be
estimated from feature correspondences. For this we equate
the two expressions for t′2 (6) and (8). We obtain the fol-
lowing two equations:

ρ sin
(

θ
2

)
− L sin(θ) = λ sin(θ − ϕc)

L cos(θ)− ρ cos
(

θ
2

)
− L = −λ cos(θ − ϕc)

. (10)

From this we can get the expressions for ρ and λ in terms
of θ and ϕc.

ρ =
L sin(ϕc)− L sin(ϕc − θ)

sin(ϕc −
θ
2
)

(11)

λ =
2L sin( θ

2
)

sin(ϕc −
θ
2
)

(12)

Note, expressions (11) and (12) are exactly the core of this
paper, that is, we can actually compute the absolute distance
between the vehicle or the camera centers as a function of
the camera offset L and the camera relative motion (θ, ϕc).
In the next section we will give a minimal and a least-square
solution to compute θ and ϕc directly from a set of point
correspondences. Finally, note that ρ and λ are valid only if
L �= 0 and θ �= 0. Thus, we can only estimate the absolute
scale if the camera has an offset to the vehicle center of
motion and when the vehicle is turning. Note also that in
order to have ρ > 0 and λ > 0, we must have ϕc > θ/2
if θ > 0 or ϕc < θ/2 if θ < 0. The other way round, if
L < 0. The accuracy on the absolute scale estimates will be
evaluated in Section 6.1.

Observe that we can also write an equation for L. This
allows us to compute the offset of the camera from the rear
axis of the vehicle from ground truth data (GPS, wheel
odometry, etc.), i.e. to calibrate the camera to the vehicle
coordinate frame. By solving (11) with respect to L we
have:

L = ρ
− sin( θ

2
− ϕc)

sin(ϕc) + sin(θ − ϕc)
(13)

5. Planar motion estimation

In the previous section, we used the circular motion con-
straint to compute the absolute scale from generic θ, ϕc.
Here, we describe two algorithms to estimate up to scale

motion (i.e. θ, ϕc) of a calibrated camera under planar as-
sumption. We provide a least-square solution, which re-
quires a minimum of 3 point correspondences, as a well as
a minimal solution which only needs two point correspon-
dences. These algorithms are valid for both perspective and
omnidirectional cameras. However, to avoid bad data con-
ditioning we recommend to normalize all image points on
the unit sphere.

5.1. Least-squares solution: the 3-point algorithm

In this section, we provide a least-squares solution to
compute θ and ϕc from a set of good feature correspon-
dences. Two corresponding points p = (x, y, z)T and
p′ = (x′, y′, z′)T must fulfill the epipolar constraint

p′T Ep = 0 (14)

Using the expression (9) of the essential matrix, the epipolar
constraint expands to:

−xy′ cos(ϕc) + yx′ cos(θ − ϕc) +
zy′ sin(ϕc) + yz′ sin(θ − ϕc) = 0.

(15)

Given m image points, θ and ϕc can be computed indirectly
using singular value decomposition of the coefficient matrix
[xy′, yx′, zy′, yz′] being [h1, h2, h3, h4] the unknown vec-
tor which is defined by:

h1 = − cos(ϕc), h2 = cos(θ − ϕc)
h3 = sin(ϕc), h4 = sin(θ − ϕc).

(16)

Note, as the solution is valid up to a scale, we actually need
at least 3 point correspondences to find a solution.

Finally, the angles θ and ϕc can be derived by means of a
four-quadrant inverse tangent. However, as the elements of
the unknown vector are not independent of each other, non-
linear optimization could be applied to recover more accu-
rate estimations. The next section covers how to deal with
it.

5.2. Minimal solution: non-linear 2-point algorithm

This method proceeds along the lines of Ortin and Mon-
tiel [9]. As shown by Eq. (15), the epipolar constraint can
be reduced to a non-linear equation f(θ, ϕc) = 0 which
can be solved by Newton’s iterative method. This method
is based on a first order Taylor expansion of f , that is,

f(θ, ϕc) ≈ f(θ0, ϕc0) + Jf (θ0, ϕc0)

[
(θ − θ0)

(ϕ− ϕc0)

]

(17)
where f(θ0, ϕc0) can be computed from (15) and the Jaco-
bian Jf (θ0, ϕc0) can be written as:

Jf (θ0, ϕc0) =

[
−yx′ sin(θ0 − ϕc0) + yz′ cos(θ0 − ϕc0)

xy′ sin(ϕc0) + yx′ sin(θ0 − ϕc0)− yz′ cos(θ0 − ϕc0) + zy′ cos(ϕc0)

]

(18)
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Figure 4. The relative error % of the absolute scale estimate as
a function of the rotation angle θ. Comparison between the lin-
ear 3-point method (circles) and the non-linear 2-point method
(squares).

Newton’s method is an iterative method which starts
from an initial seed and converges to the solution through
successive approximations which are computed as:

[
θi+1

ϕci+1

]
= Jf (θi, ϕci)

−1f(θi, ϕci) +

[
θi

ϕci

]
(19)

In all the experimental results we had convergence by tak-
ing the point (θ0, ϕc0) = (0, 0) as initial seed. The algo-
rithm converged very quickly (3-4 iterations). Since only
two unknowns are determined, two is the minimum num-
ber of matches required by this algorithm to compute the
solution.

A comparison of the performance between the linear 3-
point and the non-linear 2-point algorithm is given in the ex-
perimental section 6.1. In the final implementation, section
6.2, we used the 2-point algorithm because of its slightly
better performance.

6. Experiments

6.1. Synthetic data

We investigated the performance of the algorithms in ge-
ometrically realistic conditions. In particular, we simulated
a vehicle moving in urban canyons where the distance be-
tween the camera and facades is about 10 meters. We set
the first camera at the origin and randomized scene points
uniformly inside several different planes, which stand for
the facades of urban buildings. We used overall 1600 scene
points. The second camera was positioned according to the
motion direction of the vehicle which moves along circu-
lar trajectories about the instantaneous center of rotation.
Therefore, the position of the second camera was simulated
according to the previous equations by taking into account

the rotation angle θ, the vehicle displacement ρ, and the off-
set L of the camera from the vehicle’s origin. To make our
analysis more general, we considered an omnidirectional
camera (with the same model used in the real experiments),
therefore the scene points are projected from all directions.
Finally, we also simulated feature location errors by intro-
ducing a σ = 0.3 pixel Gaussian noise in the data. The
image resolution was set to a 640× 480 pixels.

In this experiment, we want to evaluate the accuracy of
the estimated absolute scale as a function of the rotation an-
gle θ. As shown in equation (11), the estimate of the abso-
lute scale ρ from the camera relative motion is only possible
for θ �= 0. Therefore, we can intuitively expect that the ab-
solute scale accuracy increases with θ. In this experiment,
we performed many trials (one hundred) for different val-
ues of θ (varying from 0 up to 30 deg). The results shown
in Fig. 4 are the average. As observed, the accuracy im-
proves with θ, with an error smaller than 5% for θ larger
than 10 deg. The performance of the linear and non-linear
algorithm are similar when θ > 10 deg, while the non-linear
method performs better for smaller θ.

6.2. Real data

In this section we demonstrate the absolute scale com-
putation on an image sequence acquired by a car equipped
with an omnidirectional camera driving through a city in
a 3Km tour. A picture of our vehicle (a Smart) is shown
in Fig. 1. The omnidirectional camera is composed of a
hyperbolic mirror and a digital color camera ( image size
640 × 480 pixels). The camera was installed as shown in
Fig. 1(b). The offset of the camera from the rear axle is
L=0.9m. The camera system was calibrated using the tool-
box from Scaramuzza [13, 11]. Images were taken at an
average framerate of 10Hz at a vehicle speed ranging from
0 to 45km/h. In an initial step, up to scale motion estimation
under planar constraint was performed using the 2-point al-
gorithm of section 5.2. We did this for the all 4000 frames of
the dataset. In addition to the visual measurements, we also
had the wheel odometry measurements of the car. We will
use the odometry measurements as baseline to which we
compare our absolute scale values. Here, it should be noted
that the wheel odometry does not represent exactly the same
measurements as our estimated absolute scale. The wheel
odometry represents the length of the arc the wheels were
following, while the absolute scale represents the direct dis-
tance between the locations at which frames were captured.

6.2.1 Circular motion detection

The equations (11) and (12) for absolute scale estimation
only give correct results if the motion is circular. Thus, we
have to identify sections of circular motion in a camera path
prior to computing the absolute scale. For perfectly circular
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• Algorithm:

– Compute camera motion estimate up to scale

– Compute absolute scale (ρ) from θ, ϕc, L

– Identify sections for which ρ > 0

– Identify sections for which the circular motion is
satisfied

∗ Compute curvatures of two neighboring sec-
tions: ki, ki+1

∗ Check circular motion criterion:
|ki−ki+1|

ki

< 10%

– Consider correct absolute scale for sections for
which |θ| > θthresh

Figure 5. Outline of the absolute scale algorithm

motion, the curvature k is constant. The idea is therefore to
look for motion that satisfies this condition. In practice, we
accept relative changes up to 10%. Furthermore, in order
to exclude paths with low curvature, we only consider sec-
tions with curvature values between 0.03 and 0.5 m−1 and,
therefore, with radius between 2 and 33 meters.

The curvature of a circle of radius r is defined as k =
1/r. The radius can be trivially computed using trigonom-
etry by observing that an arc of length rθ has chord length
c = 2r sin(θ/2). In our case, the chord length is exactly the
distance ρ which is computed from (11). Therefore, we can
set c = ρ and the curvature k can be then readily obtained
as:

k =
2 sin( θ

2
)

ρ
(20)

To identify sections of circular motion, we look at the
motion of neighboring frames. If the motion between neigh-
boring frames is too small, we look ahead to frames that are
further out. In the experiments, we maximally look ahead
15 frames. For each frame pair i, we compute ki using (20)
and we check if it represents circular motion by checking
the difference with the curvature ki+1 of the next frame pair.
If this difference is smaller than 10%, the motion is classi-
fied as circular and non-circular otherwise. Observe that
prior to computing the curvature, we check if ρ > 0. If this
condition is not satisfied, the section is excluded a priori.
The basic outline of the algorithm is described in Fig. 5.

6.2.2 Results on absolute scale estimation

Fig. 6 shows a single curve from the path. The section ap-
parently is partly a circular motion. It is quite reasonable if
you look at it. In the picture, sections of circular motion are
indicated by green dots. The section starts at the red circles
and ends at the green circles. The sections were detected

−196 −194 −192 −190 −188 −186 −184 −182 −180

−196

−194

−192

−190

−188

−186

−184

x[m]

y[
m

]

Camera path up to scale
Tested positive for circular motion
Circular motion with correct scale estimate

Figure 6. Section of the camera path that shows circular motion.
Red and green circles mark respectively beginning and end of cir-
cular motion section from which a correct absolute scale was com-
puted.

as described above. For each detected circular section, we
computed the absolute scale and compared it to the wheel
odometry. The difference was less than 30%. In the follow-
ing we classify measurements with a difference less than
30% as correct and wrong otherwise.

Results on the accuracy of the method and on the influ-
ence of the threshold on θ are shown in Table 1 for the whole
3 Km path. Here we list the number of all detected circu-
lar motion sections and the number of correctly computed
scales. By tuning the threshold θthresh, the results can be
optimized. The absolute scale of such a section will only
be computed if the turning angle θ is larger than θthresh.
With a larger threshold on θ it is possible to reduce the of
number wrong computed scales. With a threshold setting of
30◦ it was possible to remove all wrong estimates. With this
setting, eight circular motion sections got detected and the
absolute scale difference to the wheel odometry was below
the threshold of 30%. The mean difference in this case was
20.6% (std. dev. 7.6%). This is a mean absolute difference
of 2.3m (std. dev. 0.9m) which is a satisfying result.

Fig. 7 shows a plot of the full path. Sections satisfying
ρ > 0 are shown as green dots. Observe that more than 50%
of the sections satisfy this condition. Sections where motion
was classified as circular are shown as red circles. Circu-
lar motion appears not only in sharp turns but also at slight
curves. Finally, blue circles show the sections where we
computed the most accurate absolute scale measurements.

The results demonstrate that our method is able to prop-
erly detect sections of circular motion in a camera path and
that it is possible to compute the absolute scale accurately.
In our case the offset of L = 0.9m is actually rather small
and we would expect even better results with a larger offset.
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θthresh[◦] # detected # correct
5 461 193

10 153 65
20 36 21
30 8 8

Table 1. Table shows the number of detected circular motions and
the number of correct estimated absolute scales (within 30% of
wheel odometry measurements). A threshold on θ is very effective
in removing inaccurate estimates, i.e. only motions with large θ
give accurate estimates.

Figure 7. Camera path (3 Km) showing sections of circular mo-
tion (red circles) and sections with correct estimated absolute scale
(large blue circles).

7. Conclusion

In this paper, we have shown that the nonholonomic con-
straints of wheeled vehicles (e.g. car, bike, differential drive
robot) make it possible to estimate the absolute scale in
structure from motion from a single vehicle mounted cam-
era. We have shown that this can be achieved whenever the
camera has an offset to the vehicle center of motion and
when the vehicle is turning. This result is made possible by
the fact that the vehicle undergoes locally circular motion.

Our experiments show that a good accuracy can be
achieved even with a small offset like 0.9m, although a
larger offset would increase the accuracy. The camera does
not need to be placed at a specific place, nor on the axis of
symmetry of the vehicle. This allows us to process data that
has already been captured, as most cameras will be placed
off-axis. We also showed that our method successfully de-
tects sections of circular motion in a camera path. The ex-
periments showed that actually a large amount of vehicle
motion is in fact circular. Future work would include im-
provement of the circular motion detection as this is very
important to create a robust algorithm. This could then be

used to reduce the unavoidable scale drift of structure-from-
motion system. If an absolute scale can be computed reli-
ably every hundred frames or so this will stabilize scale over
time.
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